

# Zhantong Qiu

 [studyztp](https://github.com/studyztp)<sup>1</sup> |  [Zhantong Qiu](https://www.linkedin.com/in/zhantong-qiu-60165a165/)<sup>2</sup> |  [studyztp@gmail.com](mailto:studyztp@gmail.com)<sup>3</sup> |

## INTRODUCTION

---

Computer architecture researcher focusing on computer system performance evaluation, simulation methodology, and hardware-software co-design for emerging applications. I build novel frameworks for fast, accurate, and portable computer system performance evaluation using sampled simulation. I tackle robotic applications on tiny robots and HPC workloads in datacenters through hardware-software co-design. I am a strong programmer and active contributor to production open-source simulators (e.g., gem5). I seek challenges in constrained systems and solve them with solutions that span multiple layers of the computer system stack.

## EDUCATION

---

|                                                                                                                                   |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <b>Master of Science in Computer Science</b><br><i>University of California, Davis</i> <i>Davis, California</i>                   | Fall 2023 – Spring 2026 (expected) |
| <b>Visiting Student in Electrical and Computer Engineering</b><br><i>Cornell University</i> <i>Ithaca, New York</i>               | Fall 2025 – Spring 2026            |
| <b>Bachelor of Science in Computer Science and Engineering</b><br><i>University of California, Davis</i> <i>Davis, California</i> | Fall 2020 – Spring 2023            |

## PUBLICATIONS

---

- **Nugget: Portable Program Snippets<sup>4</sup> (Accepted to HPCA 2026)**

Authors: **Zhantong Qiu**, Mahyar Samani, Jason Lowe-Power.

Nugget introduces an LLVM IR-based sampling framework that turns long-running workloads into portable program snippets (“nuggets”) which can be analyzed once, then reused across binaries, ISAs, and microarchitectures. It replaces simulator-based interval analysis with compiler instrumentation on real hardware, cutting sampling overhead by up to hundreds $\times$  versus functional simulation, while keeping intervals binary-independent via an IR-level unit of work. Using large SPEC CPU2017, NPB, and LSMS workloads, the work shows how Nugget enables fast, hardware-based validation of sampling methods and helps diagnose simulator modeling errors in gem5’s Arm memory system.

- **Accelerating the Simulation of Parallel Workloads using Loop-Bounded Checkpoints (Under review at ACM TACO)**

Authors: Alen Sabu, **Zhantong Qiu**, Harish Patil, Changxi Liu, Wim Heirman, Jason Lowe-Power, Trevor E. Carlson.

Proposed *LoopPoint*, a synchronization-agnostic loop-based sampling methodology that enables fast, accurate simulation of multi-threaded workloads via loop-bounded checkpoints, achieving up to 801 $\times$  speedup on SPEC CPU2017 with  $\sim$ 2.3% average runtime error, and introduced *ROIperf* for validating representative regions directly on silicon. This work extends the prior *LoopPoint* paper published at HPCA.

---

<sup>1</sup><https://github.com/studyztp>

<sup>2</sup><https://www.linkedin.com/in/zhantong-qiu-60165a165/>

<sup>3</sup><mailto:studyztp@gmail.com>

<sup>4</sup><https://arxiv.org/abs/2509.02873>

## TALKS AND TUTORIALS

---

- **HPCA 2026** – Paper talk: *Nugget: Portable Program Snippets* (Main Conference, Sydney, Australia).
- **CGO 2026** – Technique talk: Nugget with LLVM infrastructure ([LLVM–CGO 2026 Workshop](#), Sydney, Australia).
- **gem5 Bootcamp 2024** – Week-long hands-on training on the gem5 simulator (UC Davis, CA).
- **HPCA 2023** – LoopPoint Tools: Sampled Simulation of Complex Multi-threaded Workloads using Sniper and gem5 ([LoopPoint Tutorial](#), Montreal, Canada).
- **ISCA 2023** – Technique talk on full-system sampling support in gem5 ([gem5 Workshop](#), Orlando, FL).

## RESEARCH EXPERIENCE

---

### Graduate Researcher

June 2023 – Present

*DArchR Lab, UC Davis*

Advisor: Jason Lowe-Power

- **Nugget (LLVM IR sampling)**

- Designed and implemented a cross-platform, architecture-independent sampling framework at the LLVM IR level; supports rapid interval analysis, native execution for validation, and cross-ISA simulation.
- Evaluated Nugget on real hardware platforms with diverse performance characteristics (e.g., Ampere Altra) and in the gem5 simulator to validate fidelity and portability.
- Analyzed a diverse set of workloads (SPEC CPU2017, NPB, LSMS) to demonstrate robustness across CPU, HPC, and scientific applications.

- **Accelerating the Simulation of Parallel Workloads using Loop-Bounded Checkpoints**

- Co-led methodology and implementation to validate LoopPoint samples on gem5; under journal review.

- **SPEAR: Scalable Power and Energy Analysis and Performance Tools for Frontier**

- Working with researchers from Oak Ridge National Laboratory and University of

- **gem5 contributions**

- Ongoing upstream contributions since 2022 to full-system sampling support and related simulation features in gem5; author of [50 commits](#)<sup>5</sup> (public history).

### Visiting Student

August 2025 – Present

*Computer Systems Laboratory, Cornell University*

Advisor: Christopher Batten

- **Agile Robotic Hardware-Software Co-Design**

- Developing a closed-loop, multi-robot evaluation framework integrating robotics simulators and architecture simulators; enables parallel per-robot simulation and decouples from a specific ISA/simulator to broaden studies (e.g., ISA extensions).

- **Accurate STM32G4 Board in gem5**

- Building an accurate STM32G4 MCU model in gem5 (Arm M-profile). Implemented the [ART \(Adaptive Real-Time\) accelerator](#)<sup>6</sup> to improve Flash access latency; planning to upstream core M-profile components (e.g., NVIC).

---

<sup>5</sup><https://github.com/gem5/gem5/commits?author=studyztp>

<sup>6</sup><https://github.com/studyztp/gem5/tree/studyztp/ART-cache>

- **SimPoint**

- Implemented SimPoint support in the gem5 stdlib and ran SPEC CPU2006 experiments using SimPoint.

- **LoopPoint**

- Implemented LoopPoint support in system-emulation and full-system modes in gem5; added a generalized PC-execution counter to track occurrences of specific PCs.

## COURSE PROJECTS

---

### **CXL Shared Memory Filesystem Optimization**<sup>7</sup>

Investigated application needs in a CXL shared-memory system and improved the FAMFS framework with more efficient allocation/deallocation and zero-copy operations to avoid redundant copies.

### **Limitations of Disaggregated Memory and Innovations**<sup>8</sup>

Analyzed limitations of disaggregated memory and proposed a hardware-software co-designed page management approach.

### **CUDA Microbenchmarks**<sup>9</sup>

Developed configurable microbenchmarks to measure shared-memory latency and memory-scaling behavior on GPUs.

### **RISC-V Operating System**

Built a simple RISC-V OS on the UC Davis RISC-V Console Simulator for a course project.

## TEACHING EXPERIENCE

---

### **WQ 2024 ECS 154B: Computer Architecture Teaching Assistant**

Led weekly discussion sections and office hours; created assignment material on Chisel-based CPU model (DINO CPU).

## ORGANIZATIONS AND SERVICE

---

### **Founder of Computer Systems Seminar at UC Davis**<sup>10</sup>

Organized weekly speaker series with 12+ talks from academia and industry (still on-going).

### **HPCA 2026 Artifact Evaluation Reviewer**

Helped reviewing the artifact of the accepted paper.

## SKILLS

---

**Programming Languages:** C/C++, Python, Bash, CUDA, assembly, Latex

**Hardware Description Languages:** Chisel

**System Evaluation Tools:** gem5, QEMU

**Profiling & Instrumentation:** LLVM passes, DynamoRIO, Valgrind, Linux perf, PAPI

**Other Linux Related Tools:** cpuset, CRIU, cgroups, Docker

**Compilers:** GCC/G++, GFortran, Clang/LLVM

**Languages:** English, Cantonese, Mandarin

<sup>7</sup><https://github.com/orgs/ECS-289D/repositories>

<sup>8</sup>[https://github.com/studyztp/my-course-paper/blob/main/Limitations\\_of\\_Disaggregated\\_Memory\\_and\\_Innovations.pdf](https://github.com/studyztp/my-course-paper/blob/main/Limitations_of_Disaggregated_Memory_and_Innovations.pdf)

<sup>9</sup>[https://github.com/studyztp/CUDA\\_microbenchmarks.git](https://github.com/studyztp/CUDA_microbenchmarks.git)

<sup>10</sup><https://arch.cs.ucdavis.edu/events/computer-system-seminar>